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1 Abstract group theory

(definitions/examples)

1.1 Definition

A set of elements {E,A,B,C, · · · } form a group G when the following conditions
are fulfilled:

1. There exists a multiplication operation (∗) such that the product of any
two elements of G is in the set.

2. The associative law holds, i.e., (A ∗B) ∗C = A ∗ (B ∗C) for all A, B, C in
the set.

3. There exists a unit element E (identity element) such that E ∗ A = A ∗
E = A, i.e., the product of E with any group element leaves that element
unchanged.

4. For every element A there exists an inverse element A−1 such that A−1∗A =
A ∗ A−1 = E.

Note 1. In general, the multiplication operation is not necessarily commutative,
i.e., A ∗ B 6= B ∗ A. However, if the multiplication operation is commutative, so
that A∗B = B∗A, the group is said to be Abelian. Usually one drops the explicit
multiplication symbol ∗ and just writes products like A∗B = AB. Multiplication
then means multiplication within the group structure, not necessarily numerical
multiplication.

Note 2. In finite groups G considered here the number h of group elements is
known as order of the group.

1.2 Some familiar examples

• The real numbers R under multiplication do not form a group, since the
element 0 does not have an inverse 0−1. But the set R− {0} does form an
Abelian group under multiplication. The identity element is unity, E = 1,
because 1A = A1 = A.

• The real numbers also form a group under addition, where now zero is the
identity element, E = 0, and the inverse of A is −A, A+ (−A) = E = 0.

• Group of order 1. ’Trivial group’ containing only one element, {E}, with
the multiplication rule EE = E. Clearly, E−1 = E, and E(EE) = (EE)E
and so it obeys all the axioms of group theory.
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• Group of order 2. It is an Abelian group with elements A,A2 = E. In phys-
ical applications A might represent reflection, inversion, or an interchange
of two identical particles.

• Group of order 3. Group elements could be A,A2 = B 6= E,A3 = E
(example for cyclic group to be discussed later).

• The rotations of the (x, y) around a fixed axis z, form a group. In the case
where θ = 2π/n the rotation element is referred to in crystallography as
a n-fold axis, Cn, and the group of these rotations is obviously identical
(isomorphic) to Zn. In crystals axes can be 2, 3, 4, or 6 fold. Interestingly,
5 fold, 7 fold or other rotations are forbidden in crystals, which made the
discovery of ’Penrose tiles’ and ’quasicrystals’ an exciting novel problem in
the 1980s.

• Permutation group. One group of order n! can always be set up based on all
the permutations of n distinguishable elements, where the element i shifts
to the position indicated in the lower row:(

1 2 · · · i · · · n
α1 α2 · · · αi · · · αn

)

E =

(
1 2 3
1 2 3

)
A =

(
1 2 3
1 3 2

)
B =

(
1 2 3
3 2 1

)
C =

(
1 2 3
2 1 3

)
D =

(
1 2 3
3 1 2

)
F =

(
1 2 3
2 3 1

)
Successive permutations then form the group multiplication summarised in
the group multiplication table:

E A B C D F
E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

• The following six square matrices, together with ordinary matrix multipli-
cation form a group:

E =

(
1 0
0 1

)
A =

(
−1 0
0 1

)
B =

(
1
2
−
√

3
2

−
√

3
2
−1

2

)

C =

(
1
2

√
3

2√
3

2
−1

2

)
D =

(
−1

2

√
3

2

−
√

3
2
−1

2

)
F =

(
−1

2
−
√

3
2√

3
2
−1

2

)
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Figure 1: Symmetry operations of an equilateral triangle.

• The symmetry operations of an equilateral triangle (figure 1) form a group.
A, B, and C are rotations by π about the axes shown. In addition, there
is a clockwise (counterclockwise) rotation by 2π/3 denoted as D (F ), and
the identity operation E.

• The set of Lorentz transformations form a group. The multiplication law of
the group elements leads to the rule for addition of velocities in relativity.

Note. The three groups (permutation group n = 3, matrix group 3× 3, and the
symmetry operations of an equilateral triangle) obey the same group multiplica-
tion table; they are said to be isomorphic. This is an example of a one-to-one
correspondence. In case of a many-to-one correspondence the groups are said to
be homomorphic.

1.3 Rearrangement theorem

Theorem. If E,A2, A3, · · · , Ah are the elements of a group G, then the assem-
bly (sequence) of elements EAk, A2Ak, · · · , AhAk contains each group element Ai
once and only once (in the form ArAk).

Proof. For any Ai and Ak there exists an element Ar = AiA
−1
k in the group,

since the group contains inverse elements and is closed.
For this particular Ar holds ArAk = Ai. Therefore, Ai has to appear at least
once. But there are h elements in the group and h terms in the assembly of
elements. Hence, there is no opportunity for any element to make more than a
single appearance.

1.4 Cyclic groups

For any group element X one can form the sequence X, X2, X3, · · · , Xn−1,
Xn = E called the period of X. n is called the order of the group.
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Note 1. The period forms a group in itself, a cyclic group (subgroup) of order
n.

Note 2. All cyclic groups must be Abelian.

Example. Think of the group of symmetry operations of an equilateral trian-
gle mentioned above. With the group multiplication table one finds D1 = D,
D2 = F , and D3 = DF = E, so D, E, and F form a cyclic subgroup of order 3
of the entire group of order 6. Similarly one finds A and E, B and E, and C and
E to be cyclic subgroups of order 2.

Theorem. The order g of a subgroup must be an integral divisor of the order h
of the entire group. That is, h/g = l, where integer l is called the index of the
subgroup in G.

1.5 Conjugate elements and classes

A group element B is said to be conjugate to A if B = XAX−1 (or A = X−1BX),
where X is some element of the group G. Further, if B and C are both conjugate
to A, they are conjugate to each other.

To find conjugate elements one has to form all products of the form EAiE
−1 = Ai,

A2AiA
−1
2 , · · · , AhAiA−1

h . All mutually conjugate elements of Ai form a class of
elements (including Ai).

Example. Consider again the symmetry operations of an equilateral triangle
mentioned above. Clearly, the identity E is in a class by itself. In addition, the
two rotations by 2π/3 (elements D and F ) and the three rotations by π (elements
A, B, and C) form a class. Hence, for the symmetry operations of an equilateral
triangle there are three classes.
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2 Group representations

(orthogonality theorem, character)

2.1 Definition

A representation of an abstract group is in general any group composed of con-
crete mathematical entities which is homomorphic to the original group. Here,
we restrict our attention to representations by square matrices, with matrix mul-
tiplication as the group multiplication operation.

Note 1. Associate a matrix Γ(A) with each group elementA such that Γ(A)Γ(B) =
Γ(AB).

Note 2. These matrices then satisfy the group multiplication table and therefore
in every way “represent” the abstract group element.

Note 3. Of course, the identity element is represented by the unit matrix:
Γ(E) = I.

Note 4. The number of columns and rows (dimensionality of the matrix) in the
matrix is called dimensionality of the representation (similar to the order of the
group).

2.2 Some notes about matrices

A special matrix multiplication occurs for matrices having all nonzero elements
in square blocks along the diagonal, e.g.

1 0 0 0 0 0
1 2 0 0 0 0
0 0 3 0 0 0
0 0 0 1 3 2
0 0 0 1 2 2
0 0 0 4 0 1




4 1 0 0 0 0
2 3 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 2
0 0 0 3 0 2
0 0 0 2 1 1

 =


4 1 0 0 0 0
8 7 0 0 0 0
0 0 3 0 0 0
0 0 0 13 3 10
0 0 0 10 3 8
0 0 0 2 5 9


The product is blocked out in exactly the same way as are its factors, i.e., the
blocked out parts can be considered independently, e.g.[

1 0
1 2

] [
4 1
2 3

]
=

[
4 1
8 7

]

[3] [1] = [3]
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Definition. The character χ of a square matrix A is defined as the sum of its
diagonal elements:

χ(A) =
∑
j

ajj

There are two important theorems concerning characters.

Theorem 1. If C = AB and D = BA, then the characters of C and D are equal.

Proof.

χ(C) =
∑
j

cjj =
∑
j

∑
k

ajkbkj

χ(D) =
∑
k

dkk =
∑
k

∑
j

bkjajk

=
∑
j

∑
k

bkjajk =
∑
j

∑
k

ajkbkj = χ(C)

Theorem 2. Conjugate matrices have identical character.

Proof. Conjugate matrices are related by a similarity transformation in the
same way as are conjugate elements of a group. Thus, if matrices A and B are
conjugate, there is some matrix D such that B = D−1AD.

χ(B) = χ(D−1AD) = χ
(
(D−1A)D

)
= χ

(
D(D−1A)

)
= χ

(
(D−1D)A

)
= χ(A)

2.3 Matrix notation for geometric transformations

One important application of matrix algebra lies in expressing the transformation
of a point in space.

Identity. The identity operation E leaves the coordinates x, y, and z of an
arbitrary point unchanged and can be described by a unit matrix 1 0 0

0 1 0
0 0 1

 x
y
z

 =

 x
y
z


Inversion. The inversion operation simply changes sign of all coordinates with-
out permuting any. It can be understood as a negative identity matrix. −1 0 0

0 −1 0
0 0 −1

 x
y
z

 =

 x̄
ȳ
z̄
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Reflections. If a plane of reflection coincides with a principal Cartesian plane
(xy, xz, yz), then the reflection of a general point with coordinates x, y, and
z has the effect of changing the sign of the coordinates measured perpendicular
to the plane while leaving unchanged the two coordinates whose axes define the
plane.

σxy :

 1 0 0
0 1 0
0 0 −1

 x
y
z

 =

 x
y
z̄


σxz :

 1 0 0
0 −1 0
0 0 1

 x
y
z

 =

 x
ȳ
z


σyz :

 −1 0 0
0 1 0
0 0 1

 x
y
z

 =

 x̄
y
z


Proper rotation. Define the z axis as rotation axis. Then, the z coordinate
will be unchanged by any rotation about the z axis. ? ? 0

? ? 0
0 0 1


[?] can be solved as two-dimensional problem in xy plane.

The total matrix for a clockwise rotation through φ about the z axis can be
written as  cosφ sinφ 0

− sinφ cosφ 0
0 0 1

 x1

y1

z1

 =

 x2

y2

z2


Improper rotation. Same as proper rotation but with additional change of
sign in z coordinate (only mentioned for completeness). cosφ sinφ 0

− sinφ cosφ 0
0 0 −1

 x1

y1

z1

 =

 x2

y2

z2


This can be seen as a proper rotation with an additional reflection in xy plane cosφ sinφ 0

− sinφ cosφ 0
0 0 1

 1 0 0
0 1 0
0 0 −1

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 −1
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Since all of these matrices represent group elements the product of any two rep-
resents a matrix of some other operation 1 0 0

0 −1 0
0 0 1

  −1 0 0
0 1 0
0 0 1

 = σxzσyz =

 −1 0 0
0 −1 0
0 0 1


σxz σyz C2(z)

2.4 More on representations

Representations are not unique.

Examples.

1. A similarity transformation U−1Γ(A)U generates a new set of matrices
which provide an equally good representation.

2. A physical example: rotation of reference axis (x, y, z) → (x′, y′, z′)

3. Combination of different representations(
Γ(A) O
O Γ′(A)

)
How many representations are there? Coming back to representations and ex-
amples of the permutation group P(3).

E A D
Γ1 (1) (1) (1)
Γ1′ (1) (−1) (1)

Γ2

(
1 0
0 1

) (
−1 0
0 1

) (
−1

2

√
3

2

−
√

3
2
−1

2

)

ΓR


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




1 0 0 0
0 1 0 0

0 0 −1
2

√
3

2

0 0 −
√

3
2
−1

2


Write ΓR = Γ1 + Γ1′ + Γ2 or in matrix form

ΓR =

 Γ1 O O
O Γ1′ O
O O Γ2


Another example refers to the water molecule. Assign three unit vectors to each
of the atoms and write down the matrices representing changes and interchanges
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of these unit vectors upon applying symmetry operations. This will yield 9 × 9
matrices constituting a representation of the H2O symmetry group.

Are there special representations?

Suppose we have a set of matrices E, A, B, · · · which form a representation of
a group. Now apply the same similarity transformation to obtain a new set of
matrices, namely E ′ = S−1ES, A′ = S−1AS, B′ = S−1BS, · · · The new set of
matrices is also a representation of the group.

Proof. Let AB = C. Then

A′B′ = (S−1AS)(S−1BS)

= S−1A(SS−1)BS

= S−1(AB)S

= S−1CS = C ′

Now assume A transformed to A′ using S and find A′ to be a block-factored
matrix

A′ = S−1AS =


A′1

A′2
A′3

A′4
A′5


If each of the matrices A′, B′, C ′, · · · is blocked out in the same way, the corre-
sponding blocks of each matrix can be multiplied together separately

A′1B
′
1 = C ′1

A′2B
′
2 = C ′2

A′3B
′
3 = C ′3

Therefore, E ′1, A′1, B′1, C ′1, · · · are in themselves representations of the group.
The set of matrices E, A, B, C, · · · is then called a reducible representation
because it is possible, using some matrix, to transform each matrix in the set
into a new one so that all of the new ones can be taken apart in the same way to
give two or more representations of smaller dimension.

If it is not possible to find a similarity transformation which will reduce all of
the matrices of a given representation in the above manner, the representation is
said to be irreducible. It is the irreducible representations of a group that are of
fundamental importance.
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2.5 The “Great Orthogonality Theorem”

Some notations.

• The order of a group is given by h.

• The dimension of ith representation (which is the dimension of each of the
matrices constituting it) will be li.

• Symmetry operations have the generic symbol R.

• The element in the mth row and nth column of a matrix corresponds to an
operation R in the ith irreducible representation Γi(R)mn.

The “Great Orthogonality Theorem”∑
R

[Γi(R)mn] [Γj(R)m′n′ ] =
h√
lilj

δijδmm′δnn′

Consider two irreducible representations Γi and Γj. Then, any corresponding
matrix elements can be seen as vector components in a h dimensional space.
Moreover, they are orthonormal (orthogonal and of unit length).

Some simpler ways to write it (under various conditions)

• vectors from different representations are orthogonal∑
R

Γi(R)mnΓj(R)mn = 0 for i 6= j

• vectors from the same representation but different sets are orthogonal∑
R

Γi(R)mnΓi(R)m′n′ = 0 m 6= m′ and/or n 6= n′

• the square of length of any vector is∑
R

Γi(R)mnΓi(R)mn =
h

li

There are five important rules about irreducible representations and their char-
acters which will be covered in the next lecture.
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3 Application I: Character tables

3.1 Deriving character tables

In deriving character tables we basically rely on five different rules, which can all
be obtained from the “Great Orthogonality Theorem”.

1. The number of irreducible representations in a character table is equal to
the number of classes in the group.

2. The characters of all symmetry operations in the same class are equal in
each given irreducible representation.

3. The sum of the squares of all characters in any irreducible representation
is equal to the order of the group.

4. The point product of characters of any two irreducible representations is
zero, e.g., irreducible representations are orthogonal.

5. The sum of squares of dimensions of the irreducible representations equals
the order of the group.

Example 1.: C2v (as for the H2O molecule) with symmetry operations E, C2,
σv, and σ′v. These are four classes, so according to rule 1 we have four different
irreducible representations Γi with i = 1, · · · , 4. There will always be the totally
symmetric representation, and according to rule 5 the characters for the identity
operator E should obey [Γ1(E)]2 + [Γ2(E)]2 + [Γ3(E)]2 + [Γ4(E)]2 = h which can
only be fulfilled by Γi(E) = 1. With this we arrive at the first part of our C2v

character table

C2v E C2 σv σ′v
Γ1 1 1 1 1
Γ2 1
Γ3 1
Γ4 1

Applying now rule 3 and 4 we have to fill in permutations of two −1 into the
character table.

C2v E C2 σv σ′v
A1 = Γ1 1 1 1 1
A2 = Γ2 1 1 -1 -1
B1 = Γ3 1 -1 1 -1
B2 = Γ4 1 -1 -1 1

There is also a naming convention for the different representations in the character
table of the groups.
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• A,B (one-dimensional representations), E (two-dimensional representations),
and T (three-dimensional representations, only in cubic groups).

• If χ(Cn) > 0 (< 0) then it is said to be symmetric (antisymmetric) with
respect to the reference axis Cn and labelled with A (B).

• Symmetric (antisymmetric) with respect to σh:
′ (′′).

• Symmetric (antisymmetric) with respect to inversion i: g (u).

• Just numbering: 1, 2, · · ·

Example 2. C3v (as for the NH3 molecule) with symmetry operations E, C3, C2
3 ,

σv, σ
′
v, and σ′′v . There are 3 classes, so according to rule 1 we have three different

irreducible representations Γi with i = 1, · · · , 3. Again, there will always be the
totally symmetric representation, and according to rule 5 the characters for the
identity operator E should obey [Γ1(E)]2 + [Γ2(E)]2 + [Γ3(E)]2 = h which can
only be fulfilled if there is one two-dimensional representation Γ3(E) = 2. With
this we arrive at the first part of our C3v character table

C3v E [C3 C2
3 ] [σv σ′v σ′′v ]

Γ1 1 1 1 1 1 1
Γ2 1
Γ3 2

Keeping in mind rule 2 stating that the characters of the C3 class and the σv
class have to be the same, once again applying rules 3 and 4 lead to orthogonal
irreducible representations.

C3v E [C3 C2
3 ] [σv σ′v σ′′v ]

Γ1 1 1 1 1 1 1
Γ2 1 1 1 -1 -1 -1
Γ3 2 -1 -1 0 0 0

This can be written in a shorter form taking into account the number of elements
in each class.

C3v E 2C3 3σv
A1 = Γ1 1 1 1
A2 = Γ2 1 1 -1
E = Γ3 2 -1 0

Example 3. C4v with symmetry operations E, C4, C2
4 = C2, C3

4 , σv, σ
′
v, σd, and

σ′d. There are now five classes, so according to rule 1 there will be five different
irreducible representations Γi with i = 1, · · · , 5 in the character table. Again,
there will always be the totally symmetric representation, and according to rule
5 the characters for the identity operator E should obey [Γ1(E)]2 + [Γ2(E)]2 +
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[Γ3(E)]2 + [Γ4(E)]2 + [Γ5(E)]2 = h which can only be fulfilled if there is one
two-dimensional representation Γ5(E) = 2. With this we arrive at the first part
of our C4v character table

C4v E [C4 C3
4 ] [C2

4 = C2] [σv σ′v] [σd σ′d]
Γ1 1 1 1 1 1 1 1 1
Γ2 1
Γ3 1
Γ4 1
Γ5 2

Again, keeping in mind rule 2 stating that the characters of the C4 class, the σv
class, and the σd class have to be identical, a subsequent application of rules 3
and 4 leads to the following character table

C4v E [C4 C3
4 ] [C2

4 = C2] [σv σ′v] [σd σ′d]
Γ1 1 [ 1 1] 1 [ 1 1] [ 1 1]
Γ2 1 [ 1 1] 1 [-1 -1] [-1 -1]
Γ3 1 [-1 -1] 1 [-1 -1] [ 1 1]
Γ4 1 [-1 -1] 1 [ 1 1] [-1 -1]
Γ5 2 a a b c c d d

The last line can only be found by explicitly writing down the pairwise orthogonal-
ity conditions among the irreducible representations (using number of symmetry
elements per class times character of Γi times character of Γ5)

Γ1Γ5 = 1 ∗ 1 ∗ 2 + 2 ∗ 1 ∗ a+ 1 ∗ 1 ∗ b+ 2 ∗ 1 ∗ c+ 2 ∗ 1 ∗ d
= 2 + 2a+ b+ 2c+ 2d = 0

Γ2Γ5 = 2 + 2a+ b− 2c− 2d = 0

Γ3Γ5 = 2− 2a+ b− 2c+ 2d = 0

Γ4Γ5 = 2− 2a+ b+ 2c− 2d = 0

This set of equations yields a = c = d = 0 and b = −2 and the full (simplified)
character table for C4v

C4v E 2C4 C2 2σv 2σd
A1 = Γ1 1 1 1 1 1
A2 = Γ2 1 1 1 -1 -1
B1 = Γ3 1 -1 1 -1 1
B2 = Γ4 1 -1 1 1 -1
E = Γ5 2 0 -2 0 0

14



3.2 Using character tables

C3v E 2C3 3σv
A1 = Γ1 1 1 1
A2 = Γ2 1 1 -1
E = Γ3 2 -1 0

To find the representation for a direct product of representations just multiply
the characters. So, for the representation of A2 × E one has to evaluate χ(E) =
1 ∗ 2 = 2, χ(C3) = 1 ∗ (−1) = −1, and χ(σv) = −1 ∗ 0 = 0 leading to the
characters of the irreducible representation E, i.e., Γ(A2 × E) = E (the direct
product of A2 and E transform like the irreducible representation of E). This will
be different for Γ(E×E) where we find χ(E) = 2∗2 = 4, χ(C3) = (−1)∗(−1) = 1,
and χ(σv) = 0 ∗ 0 = 0 leading to a reducible representation of E × E written as
Γred = 4χ(E)+χ(C3). Based on the “Great Orthogonality Theorem” one can find
the irreducible representations which are included in a reducible representation

ni =
1

h

∑
R

liχ(R)χi(R)

with the following notation

• ni number of times the irreducible representation Γi appears in the reducible
representation Γred under investigation.

• h order of the matrix.

• R symmetry operation of the group.

• li number of symmetry elements in each class.

• χ(R) character of symmetry operation R in Γred.

• χi(R) character of symmetry operation R in Γi.

So for Γred(E × E) = 4χ(E) + χ(C3) this reads

n1(A1) =
1

6
[1 ∗ 4 ∗ 1 + 2 ∗ 1 ∗ 1 + 3 ∗ 1 ∗ 0] = 1

n2(A2) =
1

6
[1 ∗ 4 ∗ 1 + 2 ∗ 1 ∗ 1 + 3 ∗ (−1) ∗ 0] = 1

n3(E) =
1

6
[1 ∗ 4 ∗ 2 + 2 ∗ 1 ∗ (−1) + 3 ∗ 0 ∗ 0] = 1

Therefore, E × E = A1 + A2 + E.
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3.3 Vibrations of molecules

Consider again the water molecule, H2O. In order to investigate the vibrational
properties of such a molecule one has to perform the following tasks.

1. Put three orthogonal unit vectors to each of the atoms to generate the basis
for a 3N dimensional reducible representation Γred of the molecule (with N
being the number of atoms).

2. In a next step the irreducible representation to this Γred has to be found,
in addition we already know

Γred = Γtrans + Γrot + Γvib

For the H2O molecule this means Γtrans = 3 (translational degrees of free-
dom), Γrot = 3 (rotational degrees of freedom), and Γvib = 3N − 6 = 3
(vibrational degrees of freedom). From our symmetry analysis we will find
a characterisation of the normal vibrations by irreducible representations
of the symmetry group.

3. To evaluate above given equation we have to find the irreducible represen-
tations for Γtrans and Γrot.

To find the 9-dimensional reducible representation of the water molecule just
remember that we need the characters of the symmetry operations (only the
traces of the matrices contribute to the characters in the group character tables).
This leads to some simplified rules finding the reducible representations

1. Add “1” to the character if the basis function (in case of the water molecule
the unit vectors at each atom) is unchanged by the symmetry operation.

2. Add “-1” to the character if the basis function changes sign under the
symmetry operation.

3. Add “0” to the character if the basis function moves under the symmetry
operation.

Remember the full character table of the point group C2v

C2v E C2 σv σ
′
v

x2, y2, z2 z A1 1 1 1 1
xy Rz A2 1 1 -1 -1
xz Ry, x B1 1 -1 1 -1
yz Rx, y B2 1 -1 -1 1

Γred 9 -1 3 1
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The reducible representation Γred is shown in the last line.

To find the irreducible representations for Γtrans and Γrot have a look at the basis
objects on the left hand side of the character table and what they could be used
for

• x, y, z: unit vectors (ex, ey, and ez), e.g., translations of core positions;
real spherical harmonics Sm1 (atomic orbitals px, py, and pz); components
of the dipole vector.

• Binary products of x, y, and z: real spherical harmonics Sm2 (atomic orbitals
dz2 , dxz, dyz, dx2−y2 , and dxy); polarisability.

• Rx, Ry, and Rz: rotations about given axis.

Utilising the formula from above to find the irreducible parts of a given reducible
representation yields

Γred = 3a1 + a2 + 3b1 + 2b2

Γtrans(x, y, z) = a1 + b1 + b2

Γrot(Rx, Ry, Rz) = a2 + b1 + b2

Therefore, we find Γvib = 2a1 + b1, where the two a1 modes refer to the symmet-
ric stretch and symmetric bend mode, and the b2 mode refers to the asymmetric
stretch mode, respectively.

Note. It would also have been possible to use internal coordinates of the water
molecule, e.g., bond lengths and bond angle. Since internal coordinates have to
be linearly independent, the number of internal coordinates and the number of vi-
brational modes have to be identical. This approach would split the problem into
bond length degrees of freedom and bond angle degrees of freedom which might
allow for additional insight in structural investigations of unknown molecules.
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4 Application II: Butadiene (C4H6)

4.1 Isomers of butadiene

Another example deals with 1, 3-butadiene (C4H6) which occurs in two different
isomers. Having a look at the basis objects atomic pz orbitals one can easily
find representations for the symmetry operations of the point group C2v being
R = E,C2, σv, σ

′
v as follows

Γ(E) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,Γ(C2) =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0



Γ(σv) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,Γ(σ
′

v) =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


with the traces given by tr(Γ(E)) = 4, tr(Γ(C2)) = 0, tr(Γ(σv)) = 0, and
tr(Γ(σ

′
v)) = −4. Using the orthogonality theorem given above one can easily

find an irreducible representation for this reducible one Γred = 2a2 + 2b1. There-
fore, we already know that a LCAO-MO calculation will yield four molecular
orbitals, two of them will transform like a2 and two like b2. However, group
theory does not give information about the energetic ordering of the molecular
orbitals. For this a full calculation has to be performed.

4.2 LCAO-MO calculation

LCAO-MO stands for Linear Combination of Atomic Orbitals to Molecular Or-
bitals. Within this method (effectively a tight-binding method), each C atom
contributes one 2pz orbital and one valence electron to the π electron system.
We have four atomic orbitals χk (k = 1 · · · 4) building up four molecular orbitals
ψi =

∑4
k=1 cikχk. Then we have to solve the eigenvalue problem

4∑
l=1

(Hkl − εSkl) cl = 0

Thereby, the Hamilton matrix Hkl =
∫
χkHχld3r and the overlap matrix Skl =∫

χkχld
3r are approximated as Hkk = α and Hkl = β (nearest neighbours only),

and Skl = δkl, respectively. This yields∣∣∣∣∣∣∣∣
α− ε β 0 0
β α− ε β 0
0 β α− ε β
0 0 β α− ε

∣∣∣∣∣∣∣∣ = 0
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Dividing by β and defining x = (α − ε)/β this yields the so-called Hückel or
topological matrix ∣∣∣∣∣∣∣∣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣ = 0

Solving for this equation yields the energies and associated molecular orbitals
(shown in figure 2).

ε4 = α− 1.618β , ψ4 = 0.372χ1 − 0.602χ2 + 0.602χ3 − 0.372χ4

ε3 = α− 0.618β , ψ3 = 0.602χ1 − 0.372χ2 − 0.372χ3 + 0.602χ4

ε2 = α + 0.618β , ψ2 = 0.602χ1 + 0.372χ2 − 0.372χ3 − 0.602χ4

ε1 = α + 1.618β , ψ1 = 0.372χ1 + 0.602χ2 + 0.602χ3 + 0.372χ4

Figure 2: (Left) Eigenvalues and eigenfunctions of butadiene (shown as pz or-
bitals). (Right) Molecular orbitals for cis and trans butadiene (top view) includ-
ing irreducible representations of the respective symmetry group.

4.3 Transitions

Looking again at the energy levels of the butadiene molecule depicted in the left
part of figure 2, we can now populate separate energy levels with electrons, e.g.,
in the molecular ground state we would have two electrons in level 1b1 (1au) and
1a2 (1bg) for cis (trans) butadiene, respectively. The symmetry of the molecular
ground state, denoted by Ψ0 (many-electron states are characterised by capital
letters), can be derived as the direct product of the symmetry of the populated
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one-electron levels. For cis (trans) butadiene this yields Ψ0 = (1b1)2(1a2)2 = A1

(Ψ0 = (1au)
2(1bg)

2 = Ag).

Being interested in electronic transition from the molecular ground state Ψ0 to an
exited state, we want to decide whether a specific transition is allowed by sym-
metry or not. This can be accomplished by analysing transition matrix elements
given by ∫

ΨinitialrΨfinal

with Ψinitial and Ψfinal being the initial and final states of the transition and r
will carry the x, y and z coordinate of the dipole vector µ = er, respectively.
The electronic transition under investigation is forbidden by symmetry if the
integral given above vanishes. From group theory we know that this happens
if the integrand does not transform as the totally symmetric representation of
the respective group. Once again, taking into account only the topology of the
molecules (how the atoms are connected) is not enough to judge whether elec-
tronic transitions are allowed by symmetry or not. For this we need to know
information about the symmetry of initial and final states, e.g., we would expect
different results for the topologically equal cis and trans butadiene. Looking at
the transition of one electron from 1a2 to 2b1 for cis butadiene this reads for the
x, y, and z coordinate of the dipole vector

x : a2 × b1 × b1 = a2(−)

y : a2 × b2 × b1 = a1(+)

z : a2 × a1 × b1 = b2(−)

The transition is allowed only for the y component (+) and forbidden for the x
and z component (−). Looking at the transition of one electron from 1bg to 2au
in trans butadiene a similar analysis yields

x : bg × bu × au = ag(+)

y : bg × bu × au = ag(+)

z : bg × au × au = bg(−)

The transition is now allowed for the x and y component (+) and forbidden
only for the z component (−). This kind of symmetry analysis of allowed and
forbidden electronic transitions can be used for structural investigations.
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5 Application III: Crystal field theory

5.1 Central atom

Consider transition metal oxides crystallising in the perovskite structure. There,
the central transition metal atom is octahedrally surrounded by oxygen atoms.
Crystal field theory aims at a description of the orbital splittings of the central
transition metal atom due to the electrostatic potential of assumed point charges,
i.e., oxygen atoms. Thereby, the central transition metal atom is described by a
hydrogen-like Schrödinger equation

H0Ψ = EΨ

and the electrostatic potential of the point charges is treated as a perturbation

H1 =
6∑
i=1

vi(x, y, z)

The question is, what can group theory tell us about the orbital splittings? Con-
sider for a moment a free central atom with five degenerate d orbitals. Since it
shall be described by a hydrogen-like Schrödinger equation, the basis functions are
chosen naturally as complex spherical harmonics Y ml

l (θ, φ) with ml = −l, · · · , l.
A group theoretical analysis requires to check the influence of symmetry opera-
tions on all (2l + 1) orbitals, thereby yielding a (2l + 1) dimensional reducible
representation Γred.

Starting point of our investigation will be the full rotation group where we then
reduce the symmetry to the octahedral group Oh. Within Oh we then have to
find Γred and its irreducible representation which will provide us with information
about the orbital splitting.

5.2 Representations

Within the full rotation group, a rotation by an angle α about an arbitrary axis
(chosen as z axis here) affects the complex spherical harmonics

Y ml
l (θ, φ) = Nml

l Pl(cos θ)eimlφ

in the following way. The prefactor

Nml
l =

√
2l + 1

4π

(l − |ml|)!
(l + |ml|)!

is unaffected by rotations about α as are the Legendre polynomials Pl(cos θ).
A rotation about α only changes the exponential part of the complex spherical
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harmonics eimlφ → eiml(φ+α). In matrix notation covering the whole (2l + 1)
dimensional basis this reads

eil(φ+α)

ei(l−1)(φ+α)

. . .
e−il(φ+α)

 =


eilα

ei(l−1)α

. . .
e−ilα




eilφ

ei(l−1)φ

. . .
e−ilφ


The matrix on the right side is the representation matrix for arbitrary rotations
C2π/α with respect to the utilised basis of (2l + 1) orbitals. From this repre-
sentation matrix only the character is of interest, i.e., the sum of the diagonal
elements. This reads

χ(l)(C2π/α) = eilα + ei(l−1)α + · · ·+ e−ilα

=
+l∑

ml=−l

eimlα

=
ei(l+1)α − e−ilα

eiα − 1

=
sin(l + 1

2
)α

sin 1
2
α

For the five d orbitals in an octahedral field l = 2 and the character reads

χ(d)(C2π/α) =
sin 5

2
α

sin 1
2
α

Evaluating this expression exemplary for some of the rotations present in the
octahedral group Oh we find χ(d)(C2) = +1, χ(d)(C3) = −1, and χ(d)(C4) = −1.
Further simplifications make use of the fact that the remaining symmetry oper-
ations can be written as products of rotations and the inversion element i, e.g.,
σh = iC2 and S6 = iC3. With this we can find Γ

(d)
red now containing 48 quadratic

5× 5 matrices

Oh E 8C3 3C2 6C4 6C ′2 i 8S6 3σh 6S4 6σd

Γ
(d)
red 5 -1 1 -1 1 5 -1 1 -1 1

Finding the irreducible representation for Γ
(d)
red yields Γ(d) = eg + t2g, i.e., a two-

dimensional representation eg accounting for the dz2 and dx2−y2 orbitals, and a
three-dimensional representation accounting for the dxy, dxz, and dyz orbitals,
respectively. Finally, group theory tells us that the fivefold degeneracy of the d
orbitals will be lifted in an octahedral crystal field resulting in a twofold degen-
erated level transforming like eg and a threefold degenerated level transforming
like t2g. Once again, group theory does not tell us about the energetic order of
the splitted levels. For this we still have to do the calculations.
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5.3 Octahedral crystal field

Consider an ideal octahedral arrangement of point charges. In order to find at
any point in space the potential that arises from the octahedron of charges the
individual charge contributions have to be added together

V (x, y, z) =
6∑
i=1

vi(x, y, z) =
6∑
i=1

ezi
rij

where rij denotes the distance from the ith charge to the point (x, y, z).

Writing now the hydrogen-like Schrödinger equation with the unperturbed wave
functions Ψi as before H0Ψi = E0Ψi we can easily find the influence of a small
perturbation H′ (the crystal field potential) on the wave functions from (H0 +
H′)Ψ′j = E ′jΨ

′
j. The new wave functions read Ψ′j =

∑n
i=1 cijΨi with

∑
c∗ijcij = 1.

The secular determinant we have to solve for then reads

(2) (1) (0) (−1) (−2)
(2) H′2,2 − E H′2,1 H′2,0 H′2,−1 H′2,−2

(1) H′1,2 H′1,1 − E H′1,0 · · ·
(0) · · ·

(−1) · · ·
(−2) H′−2,−1 H′−2,−2 − E

with

H′m,m′ = e

∫
(m)∗V (x, y, z)(m′)dτ

The next step involves evaluation of

V (x, y, z) =
6∑
i=1

vi(x, y, z) =
6∑
i=1

ezi
rij

with an expression of r−1
ij suitable for integration

1

rij
=
∞∑
n=0

n∑
m=−n

4π

2n+ 1

rn<
rn+1
>

Y m
njY

m∗

ni

with r< and r> being the lesser and larger distance of the origin to points i and
j. Being interested only in the contributions within the octahedron they read
r< = r and r> = a. As an example we evaluate the first term in the sum for
n = 0. Each term contributes (

4πze

a

)
Y 0

0 Y
0

0 =
ze

a
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so the whole contribution from n = 0 to the potential V (x, y, z) is 6ze/a. It can
be shown that n = 2 does not contribute to V (x, y, z), and the next (and final)
contribution to V (x, y, z) comes from n = 4. The whole potential then reads

V (x, y, z) =
6ze

a
+

√
49

18

√
1

2π

(
zer4

a5

)[
Y 0

4 +

√
5

14

(
Y 4

4 + Y −4
4

)]

With this expression for V (x, y, z) we can now evaluateH′m,m′ = e
∫

(m)∗V (x, y, z)(m′)dτ .
Starting with the first constant term in V (x, y, z)∫

(m∗)

(
6ze

a

)
(m′)dτ

=
6ze

a

∫
(m∗)(m′)dτ

=
6ze

a
if m = m′ otherwise zero

i.e., it affects all d orbitals and leads to an identical change in energy. It is the
second term in V (x, y, z) that is responsible for the orbital splittings and hence
gets renamed as Voct. Evaluating now the remaining integrals as∫

(0)∗Voct(0)dτ =

(
zer4

a5

)
∫

(±1)∗Voct(±1)dτ = −
(

2

3

)(
zer4

a5

)
∫

(±2)∗Voct(±2)dτ =

(
1

6

)(
zer4

a5

)
∫

(±2)∗Voct(∓2)dτ =

(
5

6

)(
zer4

a5

)

and defining Dq = (1/6)(zer4/a) the eigenvalue problem now reads∣∣∣∣∣∣∣∣∣∣
Dq − E 5Dq

−4Dq − E
6Dq − E

−4Dq − E
5Dq Dq − E

∣∣∣∣∣∣∣∣∣∣
Solving for the eigenvalues yields E1 = −4Dq and E2 = 6Dq with ∆oct = 10Dq
being the octahedral crystal field splitting, respectively. The energy levels are
shown in figure 3.
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Figure 3: Energy levels of a free ion (left), constant shift in energy when brought
into an octahedral environment of point charges (oxygen) due to the (6ze/a) term
(middle), and splitting of orbital levels into lower t2g (threefold) and upper eg
(twofold) due to the octahedral crystal field Voct.

Similarly, one can derive the expression for the equally important tetrahedral
crystal field by summing over four point charges only V(x,y,z) =

∑4
i=1 zie/rij. The

octahedral and tetrahedral crystal field are related by Vtet = −4/9Voct with the
respective splittings given as ∆tet = −4/9∆oct, respectively. The lower energy
level is now twofold degenerate with an energy of 6Dq and transform like e in the
tetrahedral group, whereas the upper energy level is now threefold degenerate
with an energy of 4Dq and transforms like t2 in the tetrahedral group.
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